Sample Questions for Midterm 1 (CS 421 Sprint 2014)

On the actual midterm, you will have plenty of space to put your answers. The actual midterm will likely have no more than 7 questions plus one extra credit question. In addition to questions of the kind asked below, you should expect to see questions (or parts of questions) similar to your MPs and HWs on the exams.

Some of these questions may be reused for the exam.

1. Given the following OCAML code:

let x = 3;; let f y = x + y;; let x = 5;; let z = f 2;; let x = "hi";;

What value will z have? Will the last declaration (let x ="hi";) cause a type error? What is the value of x after this code has been executed?

- 2. What environment is in effect after each declaration in the code in Problem 1?
- 3. What the effect of each of the following pieces of code?
 - a. (fun x -> (print_string "a"; x + 2)) (print_string "b"; 4);;
 - b. let f = (print_string "a"; fun x -> x + 2) in f (print_string "b"; 4);;
 - c. let $f = fun g \rightarrow (print_string "a"; g 2)$ in $f(fun x \rightarrow print_string "b"; 4 + x);$
- 4. Consider the following two OCaml functions, loop1 and loop2:

let rec loop1 () = loop1(); ()
let rec loop2 () = loop2();;
val loop1 : unit -> unit = <fun>
val loop2 : unit -> 'a = <fun>

Suppose you were to run **loop1();;** and **loop2();;** in OCaml, (pressing CTRL + C after at least a minute to terminate infinite loops when necessary).

- a. For each program, what behavior would you expect to see?
- b. What is the difference between loop1 and loop2?
- c. For each program state if it is:
 - i. recursive,
 - ii. forward recursive,
 - iii. tail-recursive.
- 5. Write an OCAML function **pair_up** that takes first a function, then an input list and returns a list of pairs of an element from input list (the second argument), paired with the result of applying the first argument to that element. What is the OCAML type of **pair_up**? What is the result of the following expressions:
 - a. pair_up (fun x -> x + 3) [6;4;1];;
 - b. pair_up ((fun x -> "Hi, "^x), ["John"; "Mary"; "Dana"]);;
 - c. pair_up (fun x -> x *. 2.0);;
- Write an Ocaml function palindrome : string list -> unit that first prints the strings in the list from left to right, followed by printing them right to left, recursing over the list only once. (Potential extra credit problem: Do this using each of List.fold_right and List.fold_left but no explicit use of let rec.)

- 7. Using fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b, but without using explicit recursion, write a function concat : 'a list list -> 'a list that appends all the lists in the input list of lists, preserving the order of elements. You may use the append function @.
- 8. Write an Ocaml function **list_print : string list -> unit** that prints all the strings in a list from left to right:
 - a. using tail recursion, but no higher order functions,
 - b. using fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a but no explicit recursion.
- 9. Put the following function in full continuation passing style:

let rec sum_odd $n = if n \le 0$ then 0 else $((2 * n) - 1) + sum_odd (n - 1);;$

- 10. Write the definition of an OCAML variant type reg_exp to express abstract syntax trees for regular expressions over a base character set of booleans. Thus, a boolean is a reg_exp, epsilon is a reg_exp, the concatenation of two reg_exp's is a reg_exp, the "choice" of two reg_exp's is a reg_exp, and the Kleene star of a reg_exp is a reg_exp.
- 11. Given the following OCAML datatype:

type int_seq = Null | Snoc of (int_seq * int)

write a tail-recursive function in OCAML all_pos : int_seq -> bool that returns true if every integer in the input int_seq to which all_pos is applied is strictly greater than 0 and false otherwise. Thus all_pos (Snoc(Snoc(Null,3),5),7)) should returns true, but all_pos (Snoc(Null,~1)) and all_pos (Snoc(Snoc(Null, 3),0)) should both return false.

- 12. What is **type checking**? What do the terms **static** and **dynamic** mean when referring to type checking? Given an example of a property that can be type checked statically, and an example of a property that can only be checked dynamically.
- 13. Using the typing rules on the sheet found separately on the exam website, give a full type derivation for the following judgment. You should include labels stating which rules are used where.

{} |- (let x= true in let f = fun x -> x > 1 in if x && f 3 then 17 else 3 + 5) : int